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Mechatronics Department
Tecnológico de Monterrey

Monterrey, México
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Abstract—Reliable fatigue state detection systems recently
use electroencephalography (EEG) signals to optimally monitor
mental states and decrease the chance of human errors [1]–[5].
The current paper presents a rapid real-time, EEG-based mental
fatigue assessment framework based on a linear Support Vector
Machine (SVM) model. A low-cost, dry 4-electrode consumer-
grade EEG device (Enophone [6]) collected 5-minute data from
24 undergraduate students that answered the Fatigue Assessment
Scale (FAS) questionnaire [7] before undergoing an auditory
oddball task. Pre-processing consisted in applying a 4th order
Butterworth 0.1-100 Hz bandpass filter, as well as a 60 Hz
Notch filter, in addition to a linear detrend. Feature extraction
consisted of Power Spectral Density (PSD) features via the Welch
method via Python’s Brainflow library [8], using one-second
windows and half-second overlap. Furthermore, Random Forest
(RF) regression’s Gini importance [9] determined the two most
relevant features, which were two delta (1-4 Hz) ratios: δA2

A1
and

δC3
A2

. The binary (No Fatigue / Substantial Fatigue) classification
Machine Learning (ML) model achieved 93% accuracy and 0.91
f1-score (7-fold stratified cross-validation). The SVM model was
further implemented in a real-time framework and tested using
another independent group doing the same task. The reliable,
high-accuracy model shows that low-cost EEG devices could be
further implemented within the consumer to assess their fatigue
level [10]–[14], later including cloud-computing to monitor the
user’s mental state and allowing the system to make real-time
adjustments to tasks’ complexity and pacing, thus enhancing
work efficiency and well-being [15]–[17].

Index Terms—eeg, electroencephalography, machine learning,
mental fatigue, svm, support vector machine, real-time, wearable
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