
Digital Twin Office for Workspace Throughput
Monitoring

M.O. Candela-Leal
Tecnológico de Monterrey

Monterrey, México
milton.candela@tec.mx

M.A. Ramirez-Moreno
Tecnológico de Monterrey

Monterrey, México
mauricio.ramirezm@tec.mx

J.J. Lozoya-Santos
Tecnológico de Monterrey

Monterrey, México
jorge.lozoya@tec.mx

Abstract—Efficient usage of spaces and tools in a given
workspace is a crucial component when maximizing through-
put in an input-process-output environment; the current work
presents an integrative visualization of a shared workspace with
an Internet of Things (IoT) infrastructure via the design, creation,
and real-time implementation of an integrative system that con-
sists on three modules: orders reported by employees on Bitrix24,
a Customer Relationship Management (CRM); machine’s state
and operations done according to Q-lab, an Application Program-
ming Interface (API); employees’ actions captured by Closed-
Circuit Television (CCTV) cameras, processed via a Computer
Vision (CV) algorithm with a Deep Learning (DL) model with
an architecture of a Convolutional Neural Network (CNN). With
2D video recording of over five cameras and four actions to
identify: (open machine, compact machine, change piece, add
piece), the model should take a considerable amount of time
given the complexity of the situation, as it takes a sequence of
images as input to predict an action. However, the model would
be fast when predicting an activity, given by automatic real-time
video segmentation when CCTV detects a person, the conjunction
of each of the systems, would then create a real-time dashboard
that shows the machines in terms of usage, time of operation
remaining, conflicts between data sources, and actions done by
employees. This constant monitoring of a workspace, leveraged
by intelligent technologies to create a Digital Twin (DT) of an
office, would function as a Decision Support Tool (DSS) to assure
machines’ maximum throughput.

Index Terms—Digital Twin, Computer Vision, IoT, Real-time
Simulation, Deep Learning, CNN, Throughput, HAR

I. INTRODUCTION

A. General context

Human Activity Recognition (HAR) is a widely complex
task that has been not deeply explored [1], it commonly takes
two approaches: Sensor-based (gyroscope, pressure sensors,
depth-based, and hybrid, modality systems) [2] or vision-
based (RBG, RBG-D) frame analysis using Deep Learning
(DL) [3]. The current approach considers video-based HAR, as
it uses CCTV footage from the laboratory to identify worker’s
actions.

Deep Learning models, [4] created a RNN + CNN model
trained on 128 hours of untrimmed real-world surveillance
recordings achieved 97.23% accuracy to distinguish abnormal-
ities. On the other hand, in [5] human behaviour recognition
in dynamic, static, and transition actions using accelerometer
and a gyroscope using smartphones.

B. Delimitation of the object of study

Using only Bitrix24, CCTV footage from the company and
Q-Lab API, to obtain a real-time dashboard that refreshes
on client’s needs and orders, leveraged by depth cameras to
create a DT workspace in order to appreciate better the inter-
connectivity between machines and workers.

C. Problem Statement

Chemical machines (Q-Lab) in a given lab are needed to
process some parts delivered by clients, in this case, the ob-
jective is to maximize machines’ throughout using intelligent
systems and biometrics in order to get a sense about machines’
state and how they could be optimized in real-time given DSS
of dashboard and DT.

D. Justification

Yearly analysis are being performed by the company, nev-
ertheless, real-time decision making is poorly leveraged by
intelligent devices and hence is not fully optimized on data.
It is important to not only take decisions, but take informed
decisions based on data, although, as machines require long
hours to process pieces, and their size is limited, the task of
fully optimizing the procedure gain complexity.

E. Theoretical framework

1) Digital Twin: A Digital Twin is a simulation of a
space or object of interest, which receives enormous inflow
of data in order to update the model that is being simulated, it
reassembles real-life scenarios and are useful to run tests on
that workspace and so compare how it could change the real
workspace, it could also be used to have a better appreciation
of the workspace constantly fed with data.

2) Computer Vision: Computer Vision (CV) refers to the
action of Artificial Intelligence (AI) to predict based on images
or video. It could be employed to: Measure biomechanical
features from person, detect whether a person is in a video or
not, detect certain objects in a given frame, and even measure
risk when used in autonomous devices.

3) Human Activity Recognition: Already discussed in I-A.



F. Objectives

To maximize machines’ throughput using data and a real-
time dashboard, and provide a framework of IoT devices
interconnected in an integrative system, which shouws a real-
time DT of the workspaces in order to used it as a DSS.

G. Hypothesis

Real-time inflow of data from intelligent devices, is capable
of maximizing throughput and reduce time used in a piece.
It would also increase business’ income, as it is capable of
processing more client’s orders easily and faster.

II. PROPOSAL

A. Methodology

1) Data Auto-segmentation: Based on You Only Look
Once (YOLO) CV algorithm, a data auto-segmentation was
designed in order to cut the CCTV videos only when a
person is being detected on the CCTV footage. This script
was designed in order to make real-time predictions only when
people were on the CCTV footage, but also to reduce the pre-
process time, as mini-clips of people performing actions are
needed to train the HAR DL model, and the auto-segmentation
video obtains the data easier.

2) Deep Learning Architecture: For the deep learning ar-
chitecture, it would use ConvLSTM cells in order to

Long Short-Term Memory (LSTM) cells have a different
architecture than a simple cell, its structure in Fig. 1, and the
set of equations required in Eq. (1). Three gates compose the
cell: Forget gate, input gate, and output gate.

σ σ Tanh σ

× +

× ×

Tanh

c(t−1)

Cell

h(t−1)

Hidden

x(t)Input

c(t)

Long-term

h(t)

Short-term

y(t)Output

Fig. 1: Default structure of a LSTM cell, based on [6]. It has
a combination of σ(x) and tanh(x) functions, to create three
main gates (forget, input, output) and so generate the short-
term h(t) and long-term c(t) vectors.

The processing starts on the lower part with x(t) and the
previously generated h(t−1), they are used to calculate f(t)
(left-hand side), via the σ(x) function in Eq. (1b), this controls

the forget gate to determine which information of the long-
term state should be erased, as a σ(x) function is used and their
values range from 0 (erase all) to 1 (erase nothing). On the
other hand, x(t) and h(t−1) are also used to calculate i(t) and
g(t). This consists on the input gate, where the σ(x) function
in i(t) controls the information of g(t) that should be included
in the long-term state. The addition of the forget gate and
input gate is calculated in c(t), as shown in Eq. (1e), Which
is further used in the output gate with o(t), which controls
the information from the long-term state should be read and
outputted. The element-wise multiplication of both o(t) and
c(t) is the output y(t), which is equal to h(t) (used in the next
iteration as h(t−1)), as calculated in Eq. (1f).

i(t) = σ(WT
xix(t) +WT

hih(t−1) + bi) (1a)

f(t) = σ(WT
xfx(t) +WT

hfh(t−1) + bf ) (1b)

o(t) = σ(WT
xox(t) +WT

hoh(t−1) + bo) (1c)

g(t) = tanh (WT
xgx(t) +WT

hgh(t−1) + bg) (1d)

c(t) = f(t) ⊗ c(t−1) + i(t) ⊗ g(t) (1e)
y(t) = h(t) = o(t) ⊗ tanh (c(t)) (1f)

TABLE I: In each RNN architecture, for each model that has
a specific type of layer, the output shape would be used for
each force prediction on a given dataset, where nseq = 5 and
nfeat = 88.

nlayer Layer Parameters Activation function
1 Input (nseq , height, width, 3)
2 CNN 2D 16, (3x3) ReLU
3 MP 2D (4x4)
4 Dropout 0.25
5 CNN 2D 32, (3x3) ReLU
6 MP 2D (4x4)
7 Dropout 0.25
8 CNN 2D 64, (3x3) ReLU
9 MP 2D (2x2)
10 Dropout 0.25
11 CNN 2D 64, (3x3) ReLU
12 MP 2D (2x2)
13 Flatten
14 LSTM 32
15 Dense k Softmax

3) Activation and Loss Functions: In order to measure
performance on continuous variable predictions, a set of
evaluation metrics are used as loss functions so that the DL-
based model’s performance could be evaluated and hence
its weights updated. In this sense, a cost function compares
model’s predictions and the actual data; in a regression model,
the function computes the distance between reference and pre-
dicted values [6]. The objective is to minimize the evaluation
metrics, as they measure the difference between the reference
values and their predictions, therefore predicting values similar
to the reference values.

The only loss function used is softmax activation function,
as in [6], where k is the number of total classes.



s(xi) =
exi∑k
j=1 e

xj

(2)

Moving on to loss function, the loss function used is
categorical cross-entropy, based on softmax activation function
described previously in Eq. 2, where k is the number of total
classes.

CE = −
k∑

i=1

ti log s(xi) (3)

4) Performance Metrics: A set of performance metrics
would be used to evaluate model’s performance, these include
classification (for categorical target variables) metrics.

The first set of performance metrics correspond to classifica-
tion problems: Accuracy, Precision, Recall and F1-Score. Al-
though, additional metrics should be first described, using the
confusion matrix in Table II. Depending on the combination
of predicted label and true label, the classification would be
categorized in one of the confusion’s matrix quadrants, either
TP , FN , FP or TN .

TABLE II: Confusion Matrix that describe components de-
pending on combinations of predicted and true label.

Predicted label

Positive Negative

True label
Positive True Positive (TP ) False Negative (FN )

Negative False Positive (FP ) True Negative (TN )

Moving on to our first classification metric is accuracy,
which is considered as the average correct classification per-
centage. This metric could be represented as the number of
predicted labels that match the correct classification divided
by the total number of samples. In this case, based on the
confusion matrix, this would be represented as the sum of
TP and TN divided by the total possibilities N , which is the
sum of all classifications in Eq. 4.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Additionally, precision is a classification metric that mea-
sures the number of TP classifications with respect to FP ,
and so determines which of the positive predicted labels are
actually positive by the true label, this metric was calculated
as shown in Eq. 5.

Precision =
TP

TP + FP
(5)

On the other hand, recall is quite similar to precision, al-
though this metric measures the number of TP classifications
with respect to FN , and so penalizes when the models misses
on predicting a positive label on a true labeled positive sample.

This metric is widely used in medicine field, as FN are
dangerous when diagnosing a deadly disease, it is usually
preferred to having a FP label and so do more testing in

order to determine if it is TP or FP , rather than not even
diagnosing it at all. The metric was calculated as shown in
Eq. 6.

Recall =
TP

TP + FN
(6)

This last classification metric combines both precision and
recall into a single metric called F1-Score, which takes the
harmonic mean of these metrics and so it is a more balanced
approach with respect to using precision and recall separately.
The metric was calculated as shown in Eq. 7.

F1 = 2 · precision · recall
precision+ recall

(7)

B. Methodological proposal to use

The methodological proposal is presented in Fig. 2. The pro-
cess starts with the green rectangles which represent the sys-
tem’s inputs; then they are processed based on each respective
tool, shown with a yellow rectangle; afterwards, intermediate
outputs are outputted using system’s inputs and their respective
tool, and shown with an orange rectangle. Each of these
intermediate outputs serves as inputs on the final integrative
system, which is represented with a purple rectangle; finally,
the integrative system combines all intermediate outputs and
develops the final outputs represented with red rectangles.

C. Techniques and technological tools used

1) Recurrent Neural Network (RNN): A type of Artificial
Neural Network (ANN). Instead of having a feed-forward
network (from input to output), an RNN also takes into account
past output h(t−1) and thus is connected to the future input
x(t+1).

The neuron is connected to itself when not considering time
t, as shown in Fig. 4 on the left, which is the same structure
unrolled through time on the right, where it is more apparent
that output h0 is not only the output of time 0, but it is part
of the operation of time 1, this process continues until frame
t, and thus an ANN can process sequences via the inclusion
of past output into the next operation.

When considering Fig. 4, on the left of the figure, is the
rolled through time, and on the right of the figure is the
unrolled through time version, xt represents a sample at time
t, A is a neuron with a certain activation function (usually
tanh) that behaves like ANN’s neurons, and ht is not only
the output at time t but also input on time t + 1, with its
respective sample xt+1.

2) Convolutional Neural Network (CNN): A type of ANN.
They provide a more scalable approach to image classification
and object recognition tasks, leveraging principles from linear
algebra, specifically matrix multiplication, to identify patterns
within an image.

They are distinguished from other neural networks by their
superior performance with image, speech, or audio signal
inputs. They have three main types of layers, which are:

1) Convolutional layer: A two-dimensional (2D) array of
weights, which represents part of the image. While they
can vary in size, the filter size is typically a 3x3 matrix;



CCTV

Orders received and
reported by
employees

Real-time display of
results and data in a

dashboard

Integrative system

Bitrix24Q-Lab

Employees' actions to
machines

Machine's state and
operations done

CRM DL model for CVAPI

Raw video footage

Automatic video
segmentation when

detecting a person in
a room until it leaves

Manually label each
clip depending on

their actions

CNN + RNN action
prediction model,
according to video

clips and labels

DT of office
workspace

DSS to assure
machines' maximum

throughput

Intel RealSense
Viewer

VeloView

Intel RealSense
LiDAR Camera L515

Puck Hi-Res LiDAR
Sensor

Fig. 2: Flow diagram that explains the flow and methodology followed to create the integrative system.

this also determines the size of the receptive field. The
filter is then applied to an area of the image, and a dot
product is calculated between the input pixels and the
filter. This dot product is then fed into an output array.

2) Pooling layer: Sweeps a filter across the entire input,
but the difference is that this filter does not have any
weights. Instead, the kernel applies an aggregation func-
tion to the values within the receptive field, populating
the output array.

3) Fully-connected (FC) layer: Each node in the output
layer connects directly to a node in the previous layer.
Use a softmax activation function to classify inputs
appropriately, producing a probability from 0 to 1.

3) You Only Look Once (YOLO): YOLO [7] is a well-
renowned CV algorithm for object detection it is capable
of processing frames in real-time using a CNN model and
image segmentation. In this case, YOLOv4 was used to predict
whether a person is in a given frame with an accuracy higher
than 70, which would be used to auto-cut the CCTV footage
only when a person is detected on the video.

A A A A=A

h0

x0

h1

x1

h2

x2

ht

xt

ht

xt . . .

Fig. 3: The basic structure of an RNN.

4) VeloView: VeloView (ParaView, Kitware) is a a digital
tool that performs real-time visualization and processing of
live captured 3D LiDAR data from Velodyne’s sensors, it can
playback pre-recorded data stored in .pcap files, and can record
live stream as .pcap file. The sensor sweeps an array of lasers
(16, 32, 64, 128) 360° and a vertical field of view of 40°/20°
with 5-20Hz and captures about a million points per second.

In fact, this technological tool was used to create Fig. 8,
which was generated by moving the sensor in the configuration
described in Fig. 7, during a 5-minute recording by moving
cautiously a moving shelf. A person move the moving shelf,
although it was important that he perform the movement while
squatting, otherwise, he would block the sensor and point
clouds would not be collected on the direction he is standing.

D. Infrastructure

Based on a real-time framework, to create an IoT enviro-
ment that would leverage decision making using a DT and
a dashboard for visualization of workers actions and virtual
environment.

Fig. 4: The basic structure of an CNN.



(a) Normal (1920 x 1080) (b) Infrared camera (1920 x 1080) (c) Depth camera (1024 x 768)

Fig. 5: The Intel ®RealSense ™LiDAR Camera L515 cameras..

E. Resources used

1) Intel ®RealSense ™LiDAR Camera L515: The In-
tel ®RealSense ™LiDAR Camera L515 has three integrated
cameras all in one in Fig. 5, it includes (a) normal high-
resolution camera, (b) infrared camera with the same reso-
lution as (a), and finally (c) depth camera with slightly less
resolution when compared to the previously mentioned, but it
is due to delivering depth data while keeping the same FPS.

It is a revolutionary solid state LiDAR depth camera which
uses a proprietary Microelectromechanical Systems (MEMS)
mirror scanning technology, enabling better laser power effi-
ciency compared to other time-of-flight technologies. With less
than 3.5W power consumption for depth streaming, the Intel
RealSense LiDAR camera L515 is the world’s most power
efficient high-resolution LiDAR camera.

2) Puck Hi-Res Velodyne ®LiDAR: Configuration using
this device is shown in Fig. 7. The Puck Hi-Res Velo-
dyne ®Lidar is positioned on top of a moving shelf, while
the laptop recording the data is positioned on the middle part
of the moving shelf. The moving shelf is important due to
digitization of a space requires continuous recording to create
the DT.

It is designed for applications requiring greater image
resolution. While retaining the Puck’s surround view and best-
in-class range, the Puck Hi-Res™ sensor delivers a 20° vertical
field-of-view for a tighter channel distribution.

3) CCTV: The camera points to the workstation in Fig. 6.
The recording is a 10-hour recording in .DAV video format,
a given day at (a) morning, (b) afternoon, (c) night. It can

Fig. 7: Setup configuration.

be seen that only at (b) color is present, this might be due to
lights turning full on, while (a) only has some lights turned on,
it may cause errors in the HAR algorithm, so images should
be pre-processed to black and white.

Due to video in .DAV video format, it should be transformed
to common video format (.avi or .mp4), this was accom-
plished using VidCoder, an open-source DVD/Blu-ray ripping
and video transcoding application for Windows, which uses
HandBrake as its encoding engine. The process was quite fast,
as it transformed .DAV 10-hour length video file (1920x1080,

(a) 11:02 AM (b) 2:26 PM (c) 5:38 PM

Fig. 6: CCTV from a camera in Xperto Integral Systems.



15 FPS) to 10-hour .mp4 (640x480, 15 FPS) in 2 hours.
It is based on FFmpeg, is the leading multimedia framework,

able to decode, encode, transcode, mux, demux, stream, filter
and play pretty much anything that humans and machines have
created. It supports the most obscure ancient formats up to
the cutting edge. No matter if they were designed by some
standards committee, the community or a corporation. It is also
highly portable: FFmpeg compiles, runs, and passes the testing
infrastructure FATE across Linux, Mac OS X, Microsoft
Windows, the BSDs, Solaris, etc. under a wide variety of build
environments, machine architectures, and configurations.

III. RESULTS & CONCLUSIONS

A. Results

The DT of the workspace is already created in Fig. 8,
the digitization of the workspace was done moving cau-
tiously the configuration described in Fig. 7, as well as
recording via VeloView in Sect. II-C4, using Puck Hi-Res
Velodyne ®LiDAR in Sect. II-E2.

Fig. 8: 3D visualization of the working lab.

In order to speed up the process of gathering data to train the
HAR model, an automatic video-segmentation algorithm was
designed in order to generate video clips based on the YOLO
algorithm that detects persons. The Algorithm 1 describes
the function ”cut video on person detected()” with auxiliar
functions: ”detect person()” to assess whether a person is in a
given frame leveraged by YOLOv4, and ”cut video()” to cut
video using Python package moviepy.

The YOLOv4 algorithm in a 416x416 image, 2 GB VRAM
NVIDIA GeForce RTX 3060 took approximately 10 seconds
to process 20 frames, given that video Frames Per Second
(FPS) is 15, then it takes approximately 10 seconds to process
1 video second, assuming linearity, an equation could be
formulated to obtain the processed time given video time.

First, Eq. 8 relationship between video frames fv as a
function of video time in seconds tv,s, this equation requires
video FPS, which would be represented as α. The use of α
is essential, as it a constant that relates frames to seconds by
establishing Frames Per Second.

Algorithm 1 cut video on person detected(ts, sf , l, α)
Input ts is the tolerance seconds when no human found.
Input sf is the skip frames on video analysis.
Input l is the length of the video in seconds.
Input α is the video’s FPS.

Require: tf ≥ 0 ∨ sf ≥ 0 ∨ l ≥ 0 ∨ α > 0
1: nf ← α× l # Number of frames
2: tn ← ts ÷ sf

α # Iterations tolerated
3: nd ← 0 # Iterations no person detected
4: bf ← 0 # Beginning frame
5: ef ← 0 # Ending frame
6: for f = 0→ nf do
7: if f mod sf == 0 then
8: pd ← detect person(f ) # Person detected on f
9: if pd then

10: nd ← 0
11: if bf == 0 then # If bf not initialized
12: bf ← f
13: end if
14: else
15: nd ← nd + 1
16: if nd > tn & bf ̸= 0 & ef == 0 then
17: ef ← f
18: end if
19: end if
20: if bf ̸= 0 & ef ̸= 0 then
21: cut video(bf , ef − sf ) # Cut video on ef , bf
22: bf ← 0
23: ef ← 0
24: end if
25: end if
26: end for

fv(tv,s) = tv,s · α (8)

Now, the linear relationship between processing time and
frames read is stated in Eq. 9, where tp,s refers to processing
time in seconds, and fv to video frames. Given the two points
extracted (20 frames took 10 seconds to process), the equation
could be simply expressed by dividing fv by the constant 2.

tp,s(fv) =
fv
2

(9)

Moreover, frame rate expressed in video seconds in Eq. 8
could be substituted in Eq. 9 in order to find a expression
that obtains processing time in seconds tp,s via video time in
seconds tv,s, this equation is expressed in Eq. 10

tp,s(tv,s) =
tv,s · α

2
(10)

Now, given a 10-hour video length, and using the Eq. 10,
processing time in seconds tp,s =

10·60·60·15
2 = 270, 000, now

converted to processing time in hours tp,h = 270,000
60·60 = 75.

75 hours is quite big time to process a 10-hour video length,
that number should be reduced in order to make the video



auto-segmentation practical and not wait over 3 days of non-
continuous processing to generate mini video clips based on
one camera recording one work day.

In order to reduce computation time, a skip frames sf
parameter would be added so not to make frame-per-frame
analysis, but analyzing frames each sf . Hence, when sf = 5,
then each 5 frames would be analyzed, and when sf = α,
then the image analysis would be done on each video second.

Given that 20 frames could be analyzed in 10 seconds, then
sf = α would mean that fv = tv,s in Eq. 9, and hence
the simplified expression on per second analysis, relating sf
parameter in Eq. 11.

tp,s(tv,s) =
tv,s
2 · sfα

(11)

Hence, having sf = 75 or 5 seconds, then 10-hour video
length processing would take 1 hour to process, as tp,h(tv,h) =
10

2· 7515
= 1. This is a more reasonable time when expecting 10-

hour length video from 5 different cameras, as it takes half
the time recorded to process all the cameras and generate the
mini-clips of only when a person is on the camera.

As a result, processing a 10-hour raw video would require
circa 3 hours of processing time including pre-processing
to convert the 1920x1080 DAV file to 640x480 MP4 using
VidCoder and mini-clip generation using YOLO in Python.

B. Conclusions

More actions are still required in order to create the real-
time dashboard, as the integration of the CRM and machines’
API is still missing. Although, auto-segmentation video is
currently running and generating video clips that would be
used to train the HAR model.

Due to DL approaches requiring a lot of data in order
to generalize and create a great prediction model, there is
still data to be processed into the auto-segmentation auto-
cut algorithm created using Python and YOLO. Afterwards,
manual data labeling should be done in order to create the
dataset regarding the actions to be predicted.

REFERENCES

[1] L. Minh Dang, K. Min, H. Wang, M. Jalil Piran, C. Hee Lee, and
H. Moon, “Sensor-based and vision-based human activity recognition: A
comprehensive survey,” Pattern Recognition, vol. 108, p. 107561, 2020.

[2] M. Cornacchia, K. Ozcan, Y. Zheng, and S. Velipasalar, “A survey
on activity detection and classification using wearable sensors,” IEEE
Sensors Journal, vol. 17, no. 2, pp. 386–403, 2017.

[3] “Rgb-d-based human motion recognition with deep learning: A survey,”
Computer Vision and Image Understanding, vol. 171, pp. 118–139, 2018.

[4] V. Singh, S. Singh, and P. Gupta, “Real-time anomaly recognition through
cctv using neural networks,” Procedia Computer Science, vol. 173,
pp. 254–263, 2020. International Conference on Smart Sustainable
Intelligent Computing and Applications under ICITETM2020.

[5] G. Gao, Z. Li, Z. Huan, Y. Chen, J. Liang, B. Zhou, and C. Dong, “Human
behavior recognition model based on feature and classifier selection,”
Sensors, vol. 21, no. 23, 2021.

[6] A. Géron, Hands-On Machine Learning with Scikit-Learn & TensorFlow.
O Reilly, 2nd edition ed., 2019.

[7] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2016.


