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Introduction

Subplate (SP) in fetal brain is a transitory
compartment [1-2] that lasts until 31 weeks of
gestational age (GA) [3-4], and it is critical for
brain development [5], cortical circuitry and
structure [2,6].

Objective:

- Upsample and auto-smooth existing
low-resolution (0.86 mm) SP dataset to
high-resolution (0.5 mm), via IRTK and
Bivariate Gaussian Smoothing (BGS)

- Train a high-resolution U-Net model for
automatic SP, cortical plate (CP), and
inner part (IP) segmentation

Benefits:

- More detailed delineation of brain
tissues such as the SP, CP, and IP

- More accurate SP volume & thickness

Reproduced from Vasung et al., J. Anat., 2010
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Bivariate Gaussian Smoothing (BGS)
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Univariate GS for IP mask (dilatation)
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‘ BGS for image I (dilatation & erosion)
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Conclusions and Future Work
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Conclusions: Phase 1 Phase 2
- High-quality (voxel size=0.5 mm) Train non-pretrained Train pre-trained
segmentation upsampling layers (decoder) layers (encoder)

- Fast construction of a new
high-resolution training dataset

- Reduced manual tasks for
segmentation correction

Future work:

- Finish segmentation correction
(14 out of 68 are now reviewed)

- Phased U-Net model training;
leveraged by high-resolution CP
model [1] (~200 subjects) via

deep transfer-learning [2] . Frozen weights . Frozen weights
[[] Trainable weights [[] Trainable weights
[1] Hong et al., Front. Neurosci., 2020 . Pre-trained weights . Pre-trained weights

[2] Nowak et al., Eur. Radiol., 2021



