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Introduction: Fetal bran segmentaton, wth a specc ocus on the cortcal plate (CP), s essental or the early detecton 
o atypcal bran development. Recent advances, deep learnng approaches such as convolutonal neural networks (CNNs) 
especally (Dou et al., 2021; Hong et al., 2020; Khall et al., 2019), have sgncantly mproved qualty and speed o automated
segmentaton. However, current models stll show sgncant naccuraces n certan regons that mpact segmentaton 
relablty. Here, we present a method or analyzng error patterns rom CP segmentaton usng an attenton-gated UNet model 
(Ronneberger et al., 2015; You et al., 2024) and compare these patterns wth those derved rom a novel uzzy UNet model 
(Nan et al., 2022; Prce et al., 2019), n order to nd out clusters wth largest segmentaton error.

Methods: Ths study, approved by the Insttutonal Revew Board at Boston Chldren’s Hosptal, retrospectvely analyzed T2-
weghted etal bran MRI rom 128 typcally developng etuses (gestatonal weeks [GW]: 29.36 ± 3.79, range: 21.86 - 37.30). 
14 randomly selected cases were used or testng, whle the rest were used or tranng segmentaton models. Data was 
processed usng our etal bran MRI processng ppelne (You et al., 2024), whch ncludes bran maskng, non-unormty 
correcton, slce-to-volume regstraton, and algnment to the 31-week template. We then analyzed the segmentaton error 
patterns and compared the perormance o attenton-gated UNet model (You et al., 2024) wth a uzzy UNet model (Nan et al., 
2022; Prce et al., 2019). Approach or analyss o segmentaton error patterns s summarzed n Fgure 1. In short, we calculated 
average False-Postve (FP) and False-Negatve (FN) maps across each mage par n the testng set. We dented ground 
truth edges wth morphologcal operatons and generated Dstance-Error (DE) maps by calculatng the Eucldean dstance 
rom each msclassed voxel to the nearest edge. Error map voxel values were then projected to the CP skeleton. We then 
dented the clusters wth hghest segmentaton errors by lterng the top 50% error values on the skeleton and rankng them 
based on a summed error values wthn connected regons. Fnally, we compared the wthn-cluster segmentaton qualty 
between attenton-gated UNet and uzzy UNet usng the Dce Coecent, Hausdor Dstance and Hybrd metrcs usng 
pared t-tests.



31ST ANNUAL MEETING OF THE ORGANIZATION FOR HUMAN BRAIN MAPPING • BRISBANE • 2787

ABSTRACTS
Results: Idented areas wth the largest prevalence o segmentaton errors are manly located around Sylvan Fssure (Fgure 
2a&b), medal regons o the rontal lobe (gure 2a,b&c), and medal temporal lobe (Fgure 2b&c). The average FP and FN 
errors were postvely assocated wth GW (Lnear Mxed-Eect Model, β=2221 and 2031 respectvely, p<0.001). Comparng 
segmentaton results between the attenton-gated UNet and the uzzy UNet, attenton-gated UNet perormed sgncantly 
better n terms o FP and DE only n medal regons o the rontal lobe (ΔHausdor Dstance=1.199, p<0.05; ΔDce=0.026, 
p<0.05, respectvely), whle uzzy UNet outperormed n other metrcs such as Hybrd metrcs. Overall, these results suggest 
a comparable segmentaton perormance between the between the attenton-gated UNet and the uzzy UNet n the error-
prone clusters.

Conclusions: We characterzed error patterns o automated CP segmentaton. As expected, segmentaton errors manly 
occurred around deep sulc and low-contrast areas. Ths s probably due to ther complex morphology, age-related bran 
changes, and data qualty ssues, such as partal volume eects n medal regons. Our segmentaton error evaluaton 
provdes valuable nsghts or optmzng and advancng segmentaton methods n the uture. Buldng on these ndngs, 
we plan to explore advanced segmentaton technques, such as regonally weghted loss, to enhance perormance n the 
dented clusters.
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