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Figure 2. Quantitative and qualitative comparison of the foundation model (SwinUNETR with UKB pretraining) and
SwinUNETR without UKB pretraining. Figure 2a-2d shows the bar plot comparisons of Dice score, Jaccard index, Recall and
Precision. Figure 2e-2f shows the visual comparison of input MRI, prediction results of SwinUNETR without UKB pretraining,
prediction results of SwinUNETR with UKB pretraining, and ground truth segmentations. The images are different slices from
the same subject. Abbreviation and p-value annotation: ns = not significant; * = 1.00e-02 < p <= 5.00e-02; ** = 1.00e-03 <p <=
1.00e-02; w/o = without; pred = prediction; UKB = UK Biobank dataset.

Conclusions: This study highlights the strength of the foundation model, leveraging the brain anatomy knowledge gained from
large-scale adult datasets, to improve prediction accuracy, segmentation stability, training convergence and generalisability
across the lifespan.
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Introduction: The subplate (SP) is a transient fetal brain structure implicated in numerous developmental processes, including
neuronal migration, circuit formation, and early cortical activity, with its alterations linked to neurodevelopmental disorders
(Kostovié, 2020). While recent advances in fetal MRI enable in vivo SP visualization, automated segmentation — crucial for
large-scale, non-invasive studies — remains underexplored compared to other brain structures like the cortical plate (CP) (Dou
et al.,, 2020; Uus et al., 2023). To address this gap, we extend a validated attention-gated U-Net model (Hong et al., 2020),
originally developed for CP segmentation, to incorporate SP to facilitate a more comprehensive fetal brain analysis.
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Methods: We analyzed a retrospective multi-site cohort of T2-weighted fetal brain MRI from 134 typically developing fetuses
(GW: 27.32 + 2.67, range: 21.86—-31.86). Data processing included brain masking, slice-to-volume registration, alignment to a
31-week template (You et al., 2024), and N4 bias field correction to mitigate scanner variations (Tutison et al., 2010). Fourteen
cases were held out for testing, while 120 were used for training and validation (Figure 1a,b). Our approach consisted of an
ensemble of three 2D Attention Gated U-Net models trained on axial, coronal, and sagittal planes, with multi-view aggregation
and test-time augmentation (MVA-TTA) to improve segmentation stability. A hybrid loss function combining Dice and focal loss
was used to enhance boundary delineation (Hong et al., 2020)(Figure 1c).
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Figure 1a, 3D reconstruction of fetal T2-weighted MRI with SP visible as a hyperintense band beneath
the cortical plate. Manual segmentation is highlighted in yello. b, Subject age distribution across
training and testing sets. The 32-week GA upper limit was chosen as SP contrast becomes
indistinguishable from the intermediary zone in T2-weighted MRI". ¢, Attention-gated U-Net-based
network architecture incorporating multi-view aggregation with test-time augmentation. Three
separately trained models (axial, coronal, sagittal) are combined using majority voting to enhance
segmentation stability and accuracy.

Results: Our model demonstrated high segmentation performance, achieving a global Dice score of 0.98 + 0.015 (mean * std),
Hausdorff distance of 5.36 + 2.406 voxels, and 1.29 + 0.929% volumetric change in the test set. Performance was consistent
across tissue types. We observed a slight (non-significant) decline increasing gestational age, likely due to evolving tissue
contrast and morphology complexity (Figure 2a). Qualitative evaluations showed most segmentation errors at the CP/SP
boundary (Figure 2b). Despite these, our method provided sufficient accuracy for volumetric and morphometric SP analyses,
significantly reducing the need for extensive manual correction in follow-up studies (data not shown).
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Figure 2a, Model performance in the testing set (n=14). The top row shows segmentation quality metrics—Dice
coefficient, Hausdorff distance, and % Volumetric Change—across different tissues. Bars indicate mean values, with
individual subject data points overlaid. The bottom row illustrates tissue-wise performance relative to gestational age,
with a dotted linear fit (not significant). b, Ground truth manual segmentation (yellow) vs. model-predicted SP
segmentation (red) for the lowest-performing subject (27w GA). Blue circles highlight most common errors,
primarily at the CP/SP boundary.

Conclusions: We present an automated deep-learning approach for automated SP segmentation in fetal MRI, expanding
existing method for large-scale studies of typical and atypical SP development. While minor manual correction remains
necessary, particularly in low-quality scans or complex morphologies at later gestational stages, future improvements could
incorporate automated refinement techniques such as conditional random fields (Chen et al., 2021) or hybrid segmentation
approaches (Gaset et al., 2024). By reducing reliance on labor-intensive manual segmentation, this work will allow future work
that could enhance the study of in utero brain development, advance our understanding of early brain development and
detect early biomarker for various clinical populations with adverse neurodevelopmental outcomes.
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Introduction: Human brain functions are increasingly understood through gradients derived from fMRI-BOLD via diffusion
mapping (Bernhardt, 2022). While effective at capturing macro-scale functional connectivity and its alignment with the spatial
distribution of 24 cell types (Zhang, 2024), it remains unclear how this approach elucidates the emergence of the macroscopic
BOLD variance that cannot be explained by these broad cell types alone. We propose that diffusion mapping using linear
correlations overlooks associations with finer neurobiological variations. Using similarity analysis of Koopman operators
(Kamiy, 2024; Ostrow, 2024), we show that nonlinear BOLD features strongly align with transcriptional gradients of numerous
genes, clusters of which are enriched in functions underpinning macroscopic BOLD variance.

Methods: We used resting-state fMRI data from the Max Planck Institute Leipzig Mind-Brain-Body Dataset (LEMON) (Babayan,
2019), preprocessed by Jimenez-Marin et al. (2024). For alignment with transcriptomic data from the Allen Human Brain

Atlas (Shen, 2012), fMRI images were parcellated into 391 regions using the Initial Parcellation Atlas (Jimenez-Marin, 2024).
Participants aged 20-30 were split into two groups: one (30 subjects) for hyperparameter tuning and another (106 subjects)
for analysis. For each subject, Koopman operators were estimated for 391 BOLD time courses using a Nystroem-accelerated
RBF approach (Meanti, 2024). Pairwise L2-Wasserstein distances between the singular value spectra of Koopman estimators
yielded a 391-by-391 distance matrix M per subject, which embeds nonlinear BOLD dynamics. Hyperparameters of the
estimators were tuned by minimizing normalized eigenvalue sums (NeSUM) of each embedding matrix M (He, 2022). Principal
components (PCs) of the group-averaged embedding were extracted using multidimensional scaling. We assessed alignment
between each PC and gene transcription via Spearman correlation, testing significance with a spatially constrained Moran
spectral randomization. Genes with Bonferroni-corrected significance were used to construct an interaction network with
STRING, where clusters were identified by Louvain community detection. We manually labeled each cluster using the Gene
Ontology (GO) enrichment terms assigned to its constituent genes.

Results: We identified three PCs of the embedding manifold, each roughly organizing the brain along a major functional

axis described in previous studies (Cross, 2021): Multiple Demand-Limbic, Transmodal-Sensory, and Somatomotor-Visual
(Figure 1A, B, C). The Transmodal-Sensory axis significantly aligned with 667 genes, forming 26 clusters significantly enriched
in GO processes linked to neurotransmission, cell morphology, and neurovascular coupling (Figure 1D, E). The other PCs
showed weaker alignment with gene expression: the Multiple Demand-Limbic axis is correlated with just 6 genes, and the
Somatomotor-Visual axis with 36 genes. Applying the same transcriptomic alignment to diffusion mapping eigenvectors

from the functional connectome (via the Pearson correlation matrix) showed far fewer significant gene correlations: 6, 18,
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